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= |I‘dI‘c - ll ‘% (I‘drr) sin (0a - ob) (7C)

where 0, = 2([T,I', — 1) and 8, = 28/08wy(T',L,). Using (7), o
was calculated and compared to the exact values for circuits A and
B in Fig. 1. Errors of 6% and 8% were obtained independent of
the values used for C and L. The main point of interest in this
section is the sign of ¢. A positive ¢ means that a pole of (3) is in
the right half plane and therefore the circuit is unstable.

A convenient graphical criterion for determining the sign of ¢
can be found by manipulating by the right hand side of (7) where,
as noted previously, all quantities are evaluated at w, as defined by
(5a). Note that the condition |T';[|T,| > 1 indicates instability
only if the imaginary part of the frequency derivative in (7a) is
positive. This last condition is violated in circuit B. The expression
in (7c) indicates a graphical method of determining stability. Re-
ferring to Fig. 3, first form a vector which is tangent to the T',T',
curve at wg and pointing in the direction of increasing w. The angle
6, — 6, is swept by turning this vector in a counterclockwise di-
rection around its origin to the direction of the vector that points
from 1 to T',I', at w. The angle is indicated in Fig. 3. Equation
(7c) therefore shows that the only requirement for instability is that
180° > 6, — 6, > 0. This would replace the not always valid
equation (1).

A more convenient graphical approach can be determined for the
typical case where a circuit can be split in such a way that T, is
approximately constant relative to the frequency dependence of T'...
By manipulating the expression in (7b), the following expression
for instability can be written:

1 a *
oD (En) 0w

If¢,= 2T, — 1/Ty) and ¢, = 2 (3T./dw,), criterion (8) can
be simplified to

sin (¢, — ¢p) > 0. 9

Referring to Fig. 7, form a vector which points from the point 1 /T,
to the point I .( jwo). The direction of this vector defines ¢,. Draw
another vector tangent to the T, versus w curve at w, pointing in
the direction of increasing wy. The direction of this vector defines
¢,. The angle ¢, — ¢, is swept by turning the latter vector coun-
terclockwise around the point I'.( jwy) until it is pointing in the
direction of the former vector. If 180° > ¢, — ¢, > 0, the circuit
has a right half plane pole near w, and is therefore unstable. This
graphical method is usually more convenient than the one in the
previous paragraph since it deals with quantities which remain in-
side the |T'| = 1 circle. However, it does assume that T, is ap-
proximately frequency independent.

IV. CoNCLUSION

In this paper we have shown that a commonly used condition for
instability is not universally valid. The Nyquist stability criterion
has been written in a form that is convenient for microwave usage.
A technique for producing Nyquist plots on commercially available
microwave CAD packages has been described. An approximate
expression was derived which locates a complex pole existing near
a circuit resonance. Lastly, a graphical test was described for de-
termining whether a circuit will start oscillating near a particular
resonance frequency.
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Fig. 7. Illustration of a graphical evaluation of stability near a resonance.
The plot corresponds to the unstable circuit B in Fig. 1.
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Oscillators with 1 and 2-Port Active Devices
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Abstract—This paper introduces a circular function that serves as a
basis for deciding if a circuit will continuously oscillate. The circular
function is derived from the signal flow graph of the circuit including
the external load. Any node in the flow-graph can be split into two
nodes, one of which contains incoming branches and the other con-
taining outgoing branches. The circular function is then the transfer
function between the two nodes, and it can be measured or simulated
by looking at the reflection coefficient of a circulator inserted at the
node that was originally split. Oscillations occur when the circular
function is unity. Stability of these oscillations is determined by con-
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sidering the behavior of the circular function as the circuit saturates.
The circular function can be elegantly applied to 1-port oscillators that
use negative resistance devices and to feedback oscillators containing
transistors, and it reduces to previously published results for specific
circuit topologies. To verify the practicality of this approach two
30 GHz HEMT oscillators were designed and tested.

INTRODUCTION

Analysis of feedback oscillators and negative resistance oscilla-
tors is traditionally performed using two different approaches. Fre-
quently, Kurokawa [1] analysis is employed for 1-ports, and the
Barkhausen [2] criterion is used for 2-ports. But the distinction be-
tween the two types is not rigorous. During operation, both share
the concept of a sinusoidal wave being returned in phase with the
same amplitude. The circular function, introduced in this paper,
uses this concept to unify feedback and negative resistance oscil-
lator analysis. This function provides an intuitive approach to the
design of microwave oscillators. As a special case, the circular
function encompasses results of stability for negative resistance de-
vices [1], [3] and oscillation conditions [4]. [5].

A circular function is the transfer function from a node’s output
to its input. The function describes the manner in which signals
circulate through the circuit. Each time the signal circulates, the
amplitude and phase of the node changes. The circular function has
three main properties: existence, invariance, and stability. If the
circular function is unity, a wave exiting from a circuit node returns
to the node unchanged, and the circuit has the potential to oscillate.
If such a condition exists at one node, other nodes in the circuit
will also have unity circular functions. Under specific conditions
the oscillation is invariant, regardless of the node being analyzed.
The circuit will oscillate continuously if the potential oscillation is
stable. Previous stability criteria assumed the frequency depend-
ence of the active device vary slowly relative to the passive com-
ponents [6]. But this assumption is no longer a concern since the
circular function encompasses the frequency dependence of the ac-
tive device. In the following text, each property will be rigorously
explained and justified. Examples of 1-port and 2-port oscillator
applications will be given. To determine stability, a simple large
signal model for FET’s is presented, and results from two 30 GHz
HEMT feedback oscillators are presented at the end of this paper.
Lumped circuit elements are not assumed, so this new analysis in-
cludes distributed systems.

CIrRcULAR FuNcTION DEFINITION

The definition of a circular function requires ‘‘splitting’” a node.
As in Fig. 1(a), an arbitrary node in a signal flow graph (SFG) may
have signals entering, i,, and exiting, k,. A node is split by sepa-
rating its inputs and outputs. The inputs are drawn entering a new
node and the outputs exiting another new node as in Fig. 1(b). By
connecting the input node to the output node with a branch of gain
one, a unit branch, any transfer function in the SFG remains the
same.

Fig. 1(c) illustrates the circular function 7 of the node in
Fig. 1(a). The circular function (c-function) is found by splitting
the node as in Fig. 1(b), and removing the unit branch connecting
the input and output node. The transfer function from the output
node to the input node is the circular function. Note that each node
has a corresponding circular function, so there are many circular
functions in a SFG. Recall that the state of a node in a signal flow
graph for scattering parameters represents the amplitude and phase
of a sinusoidal wave.

Existence of an Operating Point: If a node’s c-function equals

iy Ky

(@ (b) (c)

Fig. 1. (a) Arbitrary node in signal flow graph has inputs, i,, and outputs,
k,. (b) To split, create an input node on left, and output node, on right; -
then connect them with a unit branch. (c) Remove the unit branch to find
the circular function for the node.

one and its state is nonzero, the circuit can oscillate. A practical
oscillator circuit contains an active device that has amplitude de-
pendent S-parameters. As will be described later, the amplitude
dependence determines continuous oscillation. A sinusoidal signal
present at a node moves from the output node to the input node
with the gain of the c-function. Next, the signal returns back to the
output node from the input via the unit branch. This unit branch
was the same branch removed earlier to find the c-function. There-
fore a signal at the node continues to circulate unchanged if the c-
function equals one; and the circuit oscillates. )

Another justification for existence lies in the preliminaries of fre-
quency domain Hopf bifurcation [7], [8]. If an open loop transfer
function, the c-function in this case, is unity at the frequency wy,
the associated time domain system has two imaginary eigenvalues
of +jw,. Thus the time domain system has a solution of the form
sin wyt, and the solution oscillates.

Invariance: If a node’s c-function equals one, then any other-
node has a c-function of one, provided the nodes have nonzero
transfer functions. The proof is as follows. Suppose two arbitrarily
chosen nodes, X and Y in Fig. 2(a), are split as in Fig. 2(b). Re-
garding the rest of SFG in the figure, four parameters, a, b, ¢, and
d, completely represent the circuit. Using Mason’s rule {9] and
assigning 7 as the c-function for node X and v for node Y, the c-
functions become

ab
1 —¢

ab
T=c+—

r-a Y4

H

Suppose node X has a known c-function of one, 7 = 1, then ab
becomes

oo Um0 - d) =ab )

Substituting this value of ab into the definition of v in (1):

ab _ L A-00-d _
(1 -0

i—-c

Assuming a and b are nonzero the c-function for Y is one, v = 1
if 7 = 1. Note the inverse is also true, 7 = 1 ify = 1. Ifaor b
were zero and 7 = 1, nothing could be said of vy, other than y #
1 is possible. If X and Y were nonzero states and a and b were
nonzero transfer functions, ¢ = 1 or d = 1 would lead to contra-
dictions in Fig. 2(b). The existence and nonzero transfer functions
preclude the ¢ = 1 or d = 1 case for invariance.

Applying invariance of the c-function yields the same oscillation
conditions [4], [5]. For example, suppose S-parameters s;, Sy,
$12, and s,, represent a common gate FET with inductive feedback
in the gate, and it is terminated with ", on port 1 and T, on port
2. To simplify the discussion, define the modified s;; and s,:

y=d+ 1 3)

531 LoutS12 s121 1089
sy = sy + “é)

t
spp=spy t
" 1_slll-‘m

1 - 522F0u!
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(a) (b) (©)

Fig. 2. (a) Two arbitrary nodes in a signal flow graph, SFG. (b) The nodes
are split and four parameters characterize the rest of the SFG. (c) Analysis
of the c-function 7, for the node X.

feedback

()
Fig. 3. (a) Arrangement to obtain the c-function, 7, for a negative resis-
tance oscillator using a circulator. Active device S and load T, form a
negative resistance, and T', is a passive load. (b) Arrangement to obtain
the c-function of a feedback oscillator. Ports 3 and 4 are the feedback sec-
tion, and ports 1 and 2 are the gain section. (c) Signal fiow graph for the
feedback oscillator of Fig. 3(b).

(a) ©)

Now the c-function for the incident wave on port 1 becomes
51T, and for port 2 becomes 53, T,,;. From the properties of a c-
function, if s{;T', = 1 then s3Iy, = 1 provided s,, and s,, are
nonzero. By existence, the circuit can oscillate if either ¢c-function
equals one. Consider the two port transistor terminated with a one
port load as a negative resistance oscillator. Fig. 3(a) is a config-
uration for measuring the c-function of this negative resistance os-
cillator. By terminating the transistor S with the load I, the mod-
ified input reflection coefficient, s1;, is on one port of the circulator
and on the second port is I' ;. Now the reflection coefficient 7 at
the third port is identical to the c-function for the wave incident on
the transistor input, s{,I';,. For an oscillator, one designs the loads
and inductive feedback to obtain a ¢-function of one, 7 = 1, at the
desired frequency and amplitude.

Obtaining a c-function for a feedback oscﬂlator is not as ob-
vious. Breaking the connection between the gain section and the
feedback section gives access to a c-function. Attaching either end
to the circulator (see Fig. 3(b)) makes the reflection coefficient 7
identical to the c-function for the node representing the wave in-
cident on the gain section. Fig. 3(c) is a signal flow graph of the
feedback oscillator and circulator, which clearly shows the ¢-func-
tion being analyzed. The same properties of the c-function apply
to the feedback oscillator: one designs the feedback and gain such
that the c-function is one, 7 = 1, at the chosen frequency and am-
plitude. But different from the negative resistance oscillator, the
wave incident on the gain input should not be reflected to the cir-
culator. Instead, the wave should be amplified by the gain, pass
through the feedback, and then returned to the circulator.

The existence and invariance property of the c-function form an
oscillator test—provided one judiciously applies the nonzero ex-
ception of each property. To find the c-function, one simply breaks
a connection and attaches the two ends to a circulator. The c-func-
tion is the reflection coefficient of the remaining third port.

STABLE OSCILLATION FOR THE CIRCULAR FUNCTION

Designing an oscillator requires knowledge of the signal’s fre-
quency and amplitude, which have been ignored to simplify the
discussion. The c-function will vary in any physical circuit, so
characterizing the stability of the operating point becomes as im-
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portant as the existence of an operating point. For a sinusoidal sig-
nal of amplitude 4, frequency w, and phase ¢, Kurokawa 1] has
showed replacing w with (5) leads to the stability criterion:

®)

The ¢-function has been written implicitly dependent on amplitude
and frequency, but further references to the c-function will show
explicit dependence. A c-function, 7(4, w), can oscillate at the
operating point (4, wg) if

(4, wp) = 1 (6)

Suppose the c-function, 7(A(?), w), oscillates in the neighborhood
of wy, but the amplitude suffers a small perturbation at ¢ = 0:

A(® = Ay + 8A() where 3A®) #0 at t=0 (7)

If the operating point is stable, the perturbing function 6A4(r) will
decay to zero for t+ > 0. Kurokawa has used the w replacement to
derive the stability criterion for two parallel impedances. In a sim-
ilar manner, the operating point is stable if

o _; 1doa) _

li
o dt Ay dt

[and-)

<AO + BA(t), wy + ®)
Assuming d¢ /dt and A5 ddA /dt are small compared to wp, a two
parameter Taylor’s expansion of 7(4, w) yields

+__[d_?_L@] 0
dw

where the partial derivatives are evaluated at (4y, wy). Using the
imaginary part of (9) to solve for d¢ /dr and substituting this into
the real part of the equation yields an expression of 64 and déA /dt
(given in the Appendix):

)]

ar|”

ow

m{(2) (&) Joa s BE-o0

Equation (10) is a first order differential equation for 64 in time,

and its solution is:
it} (27 (3 }
) dw/ \9A )

Assuming |87 /dw| is nonzero and 4, is positive, the perturbing
function, 84(r), will exponentially decay to zero if:

() )0

Or more simply, the angles in the complex plane determine stabil-

ity:
0° < Arg {-‘?—T—} Arg {a }< 180°.
dw

Stability: If the angle from 37 /3A to 37 /dw, measured in a coun-
terclockwise directions, is less than 180°, the operating point is
stable. This stability criterion agrees with the specific case for a
negative resistance oscillator [3]. Ideally, these partial derivatives
should be evaluated at the operating point, but near the operation
point is usually adequate.

The derivatives of the c-function are a measure of an oscillator’s
stability. Numerical simulations indicate that a large magnitude for
the frequency derivative, 87 /3w, correlates with a low phase noise.
However, additional work is required to determine if the c-function
can be used as a quantitative measure of the oscillator phase noise.

Ay (10)

(11

0A(t) = exp [—tAO
(12)

(13)
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SpEciAL CASE: NEGATIVE RESISTANCE OSCILLATORS WITH
CONSTANT LOADS

To illustrate (13), suppose a negative resistance device with re-
flection coefficient p(4, w) and a constant load with reflection
coeffcient ' form the ¢-function, 7(4, w) = p(4, «)T'. Since the
load is constant, the existence and stability condition become, re-

spectively:
1 dp\ [dp\*
1 — )= > 0.
r m{<aw> <aA>}

p (Ao o) = = (14)
Note the stability condition on the reflection coefficient p(A4, w)
with a constant load is the same as the ¢-function, 7(4, w). In the
case where the constant load matches the normalized impedance of
the Smith chart, I' = 0, the existence condition requires an unde-
fined value for p (4q, wy). The operating point is found by changing
the normalizing impedance of the Smith chart so I' is nonzero and
p(Ag. wg) = 1/T is defined. But for circuits that oscillate with
T' = 0 loads, one observes that as the frequency increases p (4, w)
moves counterclockwise in the neighborhood of (4, wg). In addi-
tion, | p(4, wp) | increases towards infinity to satisfy the existence
condition as the signal amplitude increases. This agrees with the
stability criterion. Since dp /34 points outwards from the origin of
the Smith chart and dp /3w is counterclockwise, the angle indicates
stable oscillation (see Fig. 4). Suppose the conductance, Gp, of a
voltage controlled negative differential device decreases as the sig-
nal level increases, G, /34 < 0 and —Gj, < 0 [10]. If the con-
ductance was initially large enough, G, > G; where G; is the load
conductance, the conductance would decrease to satisfy G, = G,
and the load and device would oscillate in a parallel resonance cir-
cuit. Had the conductance been too small, G, < G;, the device
could not satisfy the existence condition at any signal level. In these
two cases, Gp > G, and G, < G, stability was satisfied so ex-
istence (Gp = G.) determines if the circuit will oscillate. Now
consider a circuit with an inductor of —j0.2G, and capacitor of
+j0.2Gy in series with a parallel combination of Gp, +jG,, and
—jG.. (All imaginary conductances are specified at the same fre-
quency.) When the initial conductance is small, G, < G;, neither
existence or stability are satisfied. But when the initial conductance
is large enough to satisfy existence, G, > G, the circuit fails the
stability criterion (see Table I). By duality. four similar cases ap-
pear with series resonance. Distinguishing between current or volt-
age controlled negative resistance is extremely important since it
dictates whether the conductance or resistance magnitude decreases
to zero when the device saturates [11].

SIMULATING FOR AMPLITUDE DEPENDENCE

For stability evaluation, both frequency dependence are needed.
Ideally, large signal models or S-parameter measurements should
be available, but most data sheets and models only provide small
signal frequency dependence. If variable attenuators were placed
before or after the small signal model of a transistor, the amplifi-
cation could be reduced by increasing the attenuation. But such a
scheme would not represent an increasing signal level because the
attenuator changes every parameter: s,,, $|2, S,,, and §,,. If large
signal models and data are unavailable, Pucel [12] and Johnson
[13] have shown that changing the magnitude of a FET's forward
transmission, |s,, |, accurately represents a changing signal level
in a common source configuration. Simulating this on a linear sim-
ulation package is easy with a variable attenuator, a special 3-port,
and a matched isolator that has 90° phase delay. By replacing a
FET with the arrangement of Fig. 5(a), one can evaluate stability.

M<Wg BO<®g
9P
JA
180°>6
W>Wo a_p >y
om

Fig. 4. Diagram showing the reflection coefficient as a function of fre-
quency. As the oscillator saturates the counter-clockwise loop expands to
infinity.

TABLE I
Four ExAMPLE CASES OF EXISTENCE AND STABILITY

Tests: v = pass,

X = fail
Refl.
Circuit Description  Init. Conductance Existence Stability Coef. §
Gy, +jG., —1G, Gp > G, N v ccw
in parallel G, < G, X ~ Ccw
+j0.2G, & —0.2iG,
in series with Gp < G X X CCw
circuit above Gp > G, N X Ccw

+ Direction. clockwise (CW) or counter-clockwise (CCW), of reflection
coefficient trajectory as frequency increases. The reflection coefficient plane
is normalized to G,

(a) ()]

Fig. 5. (a) Configuration for simulating large signal characteristics of a
FET. Reducing the attenuation simulates a larger signal. (b) An equivalent
signal flow graph, the special 3-ports have s;,. 5,5, 53, and s3, equal to
one.

With large attenuation, X ~ 40 dB, the FET in the top of
Fig. 5(a) becomes completely isolated and the circuit is a small
signal model. With less attenuation a signal moves through the up-
per path and then adds destructively (180° out of phase) to output
of the lower FET; the circuit simulates saturation. Decreasing the
attenuation reduces the forward transmission, and it indicates the
direction of 37 /9A. Starting with a large attenuation, one reduces
the attenuation so the c-function is one, 7 = 1. If the attenuation
is slightly reduced again, the point before reduction to the point
after is the direction of d7/dA. This model can not represent ex-
tremely large amplitudes, such as the gate input being forward
biased. But to design oscillators, this model can determine stability
and approximate the amplitude at the operating point.

FEEDBACK OSCILLATORS

Negative resistance oscillators circulate a reflected wave using
two 1-ports, whereas feedback oscillators circulate a transmitted
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(a) () ©)

Fig. 6. (a) Signal flow graph (SFG) of feedback oscillator, neglecting re-
verse transmission. (b} Equivalent SFG by duplicating node A. State 4 is
equivalent to A’. (c) Equivalent SFG by incorporating terms into $3;.

wave through two 2-ports. Each 2-port has its output connected to
the other’s input. The c-function for the feedback oscillator of Fig.
3(c) is easy to simulate but the analytical form is complicated. Us-
ing the port numers of Fig. 3(c), Fig. 6(a) shows the signal flow
graph of a feedback oscillator with the reverse transmissions of the
gain and feedback sections neglected. Without affecting any result,
the node representing the waves incident on the gain section, node
A, is duplicated as in Fig. 6(b). The c-function for node A’ be-
comes: '

T(A, W) = $553
where

521

! —
2

= (15)
1 = sy1833 — Sy 844 + 81153352054

Now the c-function for the feedback oscillator is the same as for a
1-port oscillator (see Fig. 6(c)). The feedback section is actually a
lossless 3-port terminated with a load to make a lossy 2-port, so
the feedback couples power away from the circuit. At high fre-
quencies, the gain will limit the ability to meet the existence con-
dition 54,83, = 1. Reducing the power coupled away will help, but

the gain has an upper frequency limit. Conjugate matching the tran-.

sistor, 33 = s7; and sy = 53, will maximize s3,, and aside from
a factor s4; will be the same as G, of a transistor. Although this
analysis has neglected reverse transmission, simulating as in
Fig. 3(b) does not.

Two Ka-band feedback oscillator circuits were designed, built,
and tested using this analysis technique. HEMTs with grounded
source leads were wire-bonded to microstrip transmission lines pat-
terned on 10 mil alumina substrates. The AlGaAs/GaAs HEMT’s
were fabricated by GE and had gate widths of 50 um and gate
lengths of 0.25 um. E-field probes patterned on the substrate launch
the output signal into rectangular waveguide underneath the sub-
strate, and above the substrate is a sliding short to tune the probe.
A linear transistor model extracted from 0.5-20 GHz S-parameter
measurements was used to design the circuit-at-35 GHz. At this
frequency, simulations indicated the HEMT’s would provide
7.5 dB of gain when matched to the feedback network. One of the
oscillators built used a coupler (see Fig. 7(a)) to provide —5.5 dB
of feedback, and the other used a bandpass filter and microstrip
“Tee”” (see Fig. 7(b)) to provide —3 dB of feedback. For these
circuits, the 7.5 dB gain corresponds to s3, of (15), and the feed-

backs of —5.5 dB and —3 dB correspond to s34 of the coupler and

bandpass circuits, respectively. Both circuits have a c-function
greater than one, |sj;53,] > 1, and as the signal amplitude in-
creases |s4y5y | approaches unity to establish an operating point.
The operating point is a function of the feedback and the large
signal characteristics of the the HEMT. By adjusting the feedback
and using a large signal model, the amplitudes of the operating
points could be evaluated to determine the best feedback for max-
imum power. With only the small signal model available, the feed-

Wave-
guide

g

DC Bias

DCBias  aymina
substrate

“ Excess

(a)

Alumina
substrate
C.Bias

Bandpass filter

IR
Excess "
transmission
ling —»

~——-Tuning stub
“~——— Cutout in alumina

(b)

Fig. 7. Scale drawings of two HEMT oscillators. Using epoxy, HEMTs
are glued to carrier exposed by cutouts in the alumina substrate. (a) The
coupler provides feedback for the circuit to oscillate, (b) A bandpass filter
selects the frequency to feedback.

back was designed to amplify the initial signal, |s};53] > 1. In
addition, the lengths of the excess transmission lines attaching the
feedback and gain were adjusted to rétain the phase of the signal
< 841843 = 0°, which is an implicit requirement of (6). The band-
pass oscillator operated at 28.3 GHz with 0.1 mW of output power,
and the coupler oscillator operated at 31.4 GHz with 1.5 mW of
power. During the simulation, the E-field probe was assumed to be
a perfect 50 Q load and the bias circuit to be a perfect RF open. In
practice these components are not ideal;, which is believed to be
the major contributing factor for the reduced operating frequency.

CONCLUSION

The three properties of the c-function form a complete design
test for oscillators. Existence and stability of the c-function’s op-
erating point determine oscillation. Both properties must be satis-
fied for the circuit to oscillate. Circular functions are easily avail-
able for simulation by inserting a circulator into any signal path.

- And the invariance property guarantees that any c-function can be

used to determine existence and stability. The properties apply to
all circuits so the difference between feedback and negative resis-
tance oscillators is no longer important to evaluate oscillation.

APPENDIX
Assigning:

ar L "o ,o

£==T;+.]Tw and 52=TA + j7l. (A1)
Then from (9):
. C o [de j odeA
a+ T + @ty 55— =0

(TA JTA) 64 (To: JTae l:dt AO dt } (AZ)

By the imaginary part of (A2):

. 71 déA . do do [7; dsA ; ] I
g — w8y 80 90 Te 8 il [
T T w T T Ta ok |[Te
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The real part of (A2) gives

T;aA+T;‘fi—‘f+i%dj—;“=o (Ad)

By using (A3) form of d¢ /dr into (Ad):
T;5A+%E%—T;6A}+i—l:-i‘z—f=o (A5)
<rg—£,—irg>m+<%+%>%=o (A6)
-17 [rhr, — 75741 84 + T,:AO [r)? + (r0)] ‘i‘:—f =0 (A7)

w

if 7%, is nonzero, multiply both sides by 7, and use the imaginary

operator:
2
ar\ [or\* 1 lor| déA
) (22) (S0} Lo + — | 2 =
m {<3m> <6A> }6 * A 10w| dt 0 (A8)
-2
a7 ar\ [/ar\* déA
haS b B annb Al
L {<8w> <6A> }M £ B0 )
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Parameter Extraction Technique for HBT Equivalent
Circuit Using Cutoff Mode Measurement

Seonghearn Lee and Anand Gopinath

Abstract—We propose a new parameter extraction method based on
the S-parameter measurements of the HBTs biased to cutoff. This
method is applied to confirm the results for the RF probe pad and in-
terconnection pattern parasitics obtained from the special test struc-
tures, and to determine some of the device capacitances of the HBT.
The remaining device parameters are extracted by the S-parameter
measurements of the devices biased to the active mode. The extraction
technique gives good agreement between the equivalent circuit and the
measured S-parameters of the HBT including probe pads and inter-
connections.

I. INTRODUCTION

Heterojunction bipolar transistors (HBT’s) are used in mono-
lithic microwave integrated circuit (MMIC) applications. Accurate
parameter extraction of their equivalent circuit is crucial for the
development of HBT circuits and applications. These device equiv-
alent circuits are derived from scattering (S)-parameter measure-
ments [1]-[7] usually measured on discrete devices using ‘‘on
wafer’’ RF probes over a range of frequencies and biases. For the
“‘on wafer’’ probing, the additional RF probe pads and intercon-
nections (RF probe-pattern) have to be added to the device, and
their parasitics are included in the measurement. Computer opti-
mization is used to fit the equivalent circuit parameters together
with parasitics, to the measured S-parameters [5]-[7]. In general,
it is necessary to reduce the number of unknown parameters to avoid
the non-physical local minima which occur in this technique [7].
Thus, experimental determination of the parasitic parameters is the
best method to achieve this reduction of the parameter space di-
mension. Usually, the RF probe-pattern (pads and interconnec-
tions) parasitics are ignored, and as a result, the agreement between
the circuit S-parameters and measurements is often not very good.
It is therefore necessary that an equivalent circuit model including
the RF probe-pattern be used in this parameter extraction process.

In general, most of the equivalent circuit modeling results have
been optimized without independent measurements of probe-pat-
tern parasitics. RF probe-pattern parasitics may be predetermined
by means of properly designed test structures [1], [8]. In a previous
paper [9], we have introduced an accurate parameter extraction
scheme for RF probe-pattern parasitics using the simultaneous op-
timization of ‘‘open’” and ‘‘short’’ test structures. We have also
proposed a new RF probe-pattern equivalent circuit model, and
have demonstrated that this model overcomes some of the short-
coming of previous models [1}], [2].

Fig. 1 shows the layout of a typical RF probe-pattern used to
measure HBT s built at the University of Minnesota. The RF probe-
pattern parasitics are determined by measuring two test structures,
as discussed previously [9]: one is an ‘‘open’’ circuit structure that
consists of RF probe pads and interconnections on the appropriate
passivation layer (silicon nitride in our case), and the other is a
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